Relationships between behaviour and health in working horses, donkeys, and mules in developing countries

Charlotte C. Burn1*, Tania L. Dennison2 & Helen R. Whay3

1Veterinary Clinical Sciences, The Royal Veterinary College, UK; 2Brooke Hospital for Animals, London, UK; 3Clinical Veterinary Sciences, University of Bristol, UK

Short title: Behaviour and health of working equids

*Corresponding author: Dr C. C. Burn, Centre for Animal Welfare, Department of Clinical Veterinary Sciences, The Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
Abstract

Recent studies raise serious welfare concerns regarding the estimated 93.6 million horses, donkeys and mules in developing countries. Most equids are used for work in poor communities, and are commonly afflicted with wounds, poor body condition, respiratory diseases, parasites, dental problems, and lameness. Non-physical welfare problems, such as fear of humans, are also of concern. Interventions to improve working equine welfare aim to prioritise the conditions that cause the most severe impositions on the animals’ subjectively experienced welfare, but data identifying which conditions these may be, are lacking. Here we describe a stage in the validation of behavioural welfare indicators that form part of a working equine welfare assessment protocol. Over four years, behavioural and physical data were collected from 5481 donkeys, 4504 horses, and 858 mules across nine developing countries. Behaviours included the animals’ general alertness, and their responses to four human-interaction tests, using the unfamiliar observer as the human stimulus. Avoidance behaviours correlated significantly with each other across the human-interaction tests, with 21% of animals avoiding the observer, but they showed no associations with likely anthropogenic injuries. Over 13% of equids appeared ‘apathetic’: lethargic rather than alert. Measures of unresponsiveness correlated with each other across the five tests, and were associated with poor body condition, abnormal mucous membrane colour, faecal soiling, eye abnormalities, more severe wounds, and older age, depending on the equine species. This suggests that working equids in poor physical health show an unresponsive behavioural profile, consistent with sickness behaviour, exhaustion, chronic pain, or depression-like states.

Keywords: Animal welfare; Developing countries; Equine; Human-animal relationships; Inactivity; Sickness behaviour
Introduction

An estimated 39 million donkeys, 40.5 million horses and 12.3 million mules live in developing countries, constituting over 85% of the world’s equids (FAOSTAT, 2006). In developing countries, equids are mostly used as working animals, often carrying out tasks under harsh and impoverished conditions for long hours each day. Consequently, previous research has shown that they have many physical and clinical problems, such as wounds, poor body condition, respiratory diseases, high parasite burdens, dental problems, and lameness (de Aluja, 1998; Pritchard et al., 2005; Tesfaye & Curran, 2005; Regan, 2009a; Burden et al., in press; Burn et al., in press; Saul et al., in press). These problems are likely to reduce the work efficiency of the animals, indirectly reducing the income of the often very poor people who rely on them. The physical/clinical problems are also likely to cause poor welfare for the animals themselves, since similar conditions in humans are associated with pain, weakness, exhaustion, and depression (Kelley et al., 2003). Hence, charities, such as the Brooke Hospital for Animals (‘the Brooke’) who provided data for the current study, work to attempt to improve working equine health and welfare.

To date, despite growing information on working equine health, little is known about the animal welfare implications (in the sense of the animals’ subjective experiences) of the myriad physical conditions these animals accumulate. For example, some physical conditions might be associated with pain (Broster et al., 2009; Regan, 2009b) or exhaustion (the high creatine kinase concentrations in working equids indicates that muscle damage from overwork is prevalent: Tadich et al., 1997; Pritchard et al., 2009), while others may barely be perceived by the animals even if they harm their health and longevity. This is of applied importance because funding and resources to improve animal welfare should ideally be targeted towards problems likely to cause the most suffering as perceived by the animals themselves, which may be those causing deviations from normal behaviour. It would also be of value to have
easily observed behavioural welfare indicators, so that the individual animals likely to be in most need of welfare improvement can be identified rapidly before a full assessment is done. Here we describe a stage in the validation of behavioural welfare indicators in working equids to assess their potential for providing information towards these purposes.

The behavioural indicators here formed part of a non-invasive welfare assessment that was developed in 2003 by the University of Bristol in collaboration with the Brooke. It should be noted that the data were not collected for the purposes of this study, but instead for the internal monitoring purposes of the Brooke. The data thus take the form of a series of standardised surveys of working equine populations, and we use an epidemiological approach, exploiting the natural variation within these populations, to investigate relationships between variables of interest. The welfare assessment protocol was intended to be brief and appropriate for field conditions, where observers were often interrupting the animals’ work. The welfare indicators were chosen to be simple, to minimise assessment time and to facilitate repeatability between observers. The behaviours included an observation of general alertness versus unresponsiveness to the environment. Unresponsiveness can be a component of chronic pain (Ashley et al., 2005), sickness behaviour (Aubert, 1999; Millman, 2007; Weary et al., 2009), depression (Vollmayr & Henn, 2003; Dunn et al., 2005) and exhaustion; but equally it can be associated with neutral or even good welfare if an animal perceives its situation to be secure enough to allow reduced vigilance (Paul et al., 2005). The human-interaction tests, which were proposed as measures of fear, aversion, or friendliness towards humans, incorporated brief assessments of the animals’ avoidance and other responses when a human approached, and their acceptance of human contact (e.g. for farm animals de Passille & Rushen, 2005; Waiblinger et al., 2006, and for sports and companion horses Hausberger et al., 2008). Pain behaviours were not explicitly included in the assessment, since they are highly
diverse, differing with the source, nature, and time-scale of the pain (Ashley et al., 2005; Regan, 2009a).

Like many large-scale, multi-centre epidemiological studies, data were collected by a number of trained observers (e.g. Waters et al., 2002; Dawkins et al., 2004; Rutherford et al., 2009). The observers in the current study were only those attaining ≥80% agreement with the trainer for all indicators, but the more general inter- and intra-observer reliability of the physical and behavioural indicators in the welfare assessment have also been tested (Burn et al., 2009): the population was too homogenous to conclusively test all the indicators, but while alertness showed acceptable intra-observer reliability, it showed poor reliability between observers. This suggests that some observers have different thresholds or use different cues for deciding when equids are alert or not, despite having been trained using the same guidance notes and photographs. These differences will have added unsystematic noise to the data analysed here, but the variable was included because so little is currently known about working equine behaviour, and – with modification – a measure of general alertness could be important in future equine welfare assessments.

The responses to the four human-interaction tests did show acceptable reliability between observers. The only physical indicator in the current study that attained poor reliability was mucous membrane colour, but it was included here because of its clinical relevance as a field test for endotoxaemia or gastrointestinal illness (Hailat et al., 1997; Thoefner et al., 2001; Hillyer, 2004).

In the current study, we investigated how the behaviours related to each other, and how they related to potentially relevant physical measures. Our hypotheses were broadly that (a) unresponsiveness should correlate across the tests and (b) unresponsiveness should be associated with an overall reduced prevalence of physical problems if it signifies good welfare, or with an increased prevalence of physical problems if it indicates negative welfare (i.e. we tested whether responsiveness in
these animals had a relationship in either direction with physical welfare). Also, if
aversion to humans is consistent within individual animals, animals that show
aversion to humans in one of the tests should (c) show aversion to humans in the three
other human-interaction tests, and (d) have more physical signs of anthropogenic
harm e.g. wounds on the hindquarters, potentially indicating beating.

Methods

Animals and observers

Non-invasive behavioural and physical data were collected from 5481
donkeys, 4504 horses, and 858 mules across 60 locations in nine developing
countries: Afghanistan, Egypt, Ethiopia, Guatemala, India, Jordan, Kenya, Pakistan
and The Gambia. The data were collected over a 4-year period (March 2003-
February 2007). The locations were areas where the Brooke was working or
considering working in the future, or where a collaborating organisation was working
(see Acknowledgements for collaborating organisations). Details of the locations and
dates are reported by Burn and colleagues (in press).

Welfare assessments were carried out by 42 trained observers, the vast
majority of whom were veterinarians, but who were otherwise animal behaviour
scientists, agricultural experts, or social scientists. All observers underwent a 6-10 day
training course (described in Burn et al., 2009), the length being determined by the
previous experience and English-language skills of participants; the course was based
around a detailed, 102-page, photographic guide (available upon request from the
authors: Pritchard & Whay, 2003 (unpublished), 2004 (unpublished)), which the
participants kept. Only those participants who attained ≥80% agreement with the
trainer on all measures were selected for data collection in this study. A welfare
assessment trainer assessed about 5-30% of the animals in each location to help
ensure consistency between the locations (the percentage of animals varied due to the
logistical constraints of visiting developing countries, gaining owner permission to
assess each animal, and a paucity of data available on equine populations at the
planning stages of the study). Animals were selected in locations that the observers
had experience of working in, and between 5% and 100% of animals were assessed in
each location depending on the size of the population, with it being possible to
examine a higher proportion of animals in smaller populations within a single visit.
Until 2004, observers were requested to sample systematically from known animal
populations, e.g. every third donkey in the market or on the roadside; thereafter,
observers were instructed to sample randomly by writing ‘encounter numbers’ (e.g.
1st, 2nd, 3rd etc animal encountered) or owner names on pieces of paper, which were
folded, mixed, and then blindly selected until the required sample size had been drawn
for that day.

Behaviour and health measurement

The data were collected using a welfare assessment protocol that included 41
animal-based measures potentially relevant to welfare (Pritchard & Whay, 2003
(unpublished), 2004 (unpublished)); but only a subset of the measurements were
analysed in the current study and they are summarised and briefly described in Table
1. The welfare indicators included physical health measures, as well as the animals’
general alertness (versus the opposite, labelled ‘apathy’ but while acknowledging that
this is not necessarily the associated emotional state; Table 1) and their behavioural
responses to human presence and human contact. The welfare assessment protocol
was modified slightly for some of the measurements from 2004 onwards, as described
in detail by Burn and colleagues (2009).

Broadly, the sequence and procedure for taking the measurements, including
those described in Table 1, was as follows:
1. Without disturbing the animal (and where possible, before asking the owner’s permission to observe the animal), the observer assessed the animal’s general alertness from a distance of at least 3 m away, and for up to 10 s.

2. After gaining permission from the owner, the observer approached the animal from 3 m away at a normal pace, looking at the animal’s neck or breast. The observer approached at an angle of about 20°, rather than from directly ahead of the animal, and then stopped 30 cm from the animal’s head and recorded the animal’s response at the moment they stopped.

3. The observer walked alongside the animal towards its rear and back again, maintaining a distance of about 30 cm from its body, and recorded any signs of attention to them and whether donkeys showed a tail-tuck response (tail-tucking was not observed in horses or mules).

4. The observer gently placed their hand under the animal’s chin, contacting it enough to take some weight but not so as to lift the head. If the animal moved its head away from the hand, the observer would not pursue it. This was the first point of physical contact between the observer and the animal, unless the animal itself had already initiated contact.

5. The observer then recorded physical health, starting with observing the lips and head, and any eye abnormalities. They inserted a thumb or finger into the corner of the animal’s mouth and lifted the top lip until the gums and teeth were easily visible. The observer stood back to assign a body condition score (BCS), before walking to the rear to record faecal soiling. The observer tested skin tent duration on the animal’s neck and observed any behavioural signs of heat stress (discussed elsewhere in Pritchard et al., 2006, 2007; Pritchard et al., 2008). Ectoparasites and
lesions were assessed across the body and limbs. Visible swellings of the flexor
tendon or fetlock joints were recorded, followed by hoof health, including picking
up the right fore-foot to examine the sole surface. Finally, gait was assessed by
watching the animal walk as the owner led it for approximately six paces in a
straight line away from, and then back towards, the observer; if the animal was
hitched to a cart, time-constraints required that its gait was assessed while pulling
the cart, once the cart had gained momentum (i.e. not while the animal was
starting from stationary).

Statistical analyses

Data were analysed using generalised linear mixed models for binary
outcomes (glmmML and glmmPQL, R, version 2.58). The three species were
analysed separately, and the precise sample sizes depended on how many animals fell
into each of the categories comprising the predictors in each model. In all models the
Location nested within Country was included as a random effect (this took into
account the location effects themselves as well as systematic ‘noise’ between
locations: changes over the 4-year period, the two assessment versions, and the
different observers). Predictors always included characteristics of the animals
themselves (species, age, sex, and BCS) to control known variation. They also
included the animal’s main work-type, but in some cases this caused multicollinearity
(identified from inflated standard errors in the models). When this occurred, an
urbanisation score was included instead of work-type (since it predicted the work type
to some extent); urbanisation and work-type could not be included together in the
models. Model fit was assessed using the deviance and Akaike's information criterion.

The models were selected to test: (1) interrelationships between the
behaviours, (2) relationships between general alertness/ responsiveness to human
interaction and measures of physical health, and (3) relationships between human
avoidance behaviours and physical signs of anthropogenic harm (firing lesions, slit nostrils, and lesions on the hindquarters and tail were chosen here as proxies to reflect anthropogenic harm).

The number of tests carried out was limited to those that were biologically relevant according to the scientific literature and working equine experts. Even so, because 59 tests were carried out for each species, the false discovery rate was controlled for (Benjamini & Hochberg, 1995), which determined that the appropriate significance level was $P \leq 0.016$. In addition, because this is an exploratory study, intended to suggest relationships worthy of future research rather than only to test existing hypotheses (Bender & Lange, 2001), P-values between 0.016 and the traditional significance level of 0.05 are reported as ‘trends’; these will require confirmation through further research before they can be treated as significant.

Results

Correlations between behaviours

The prevalences of each behaviour for the three species are given in Table 2, showing that over 13% of equids appeared apathetic or depressed (the two categories are combined in the current study because only 0.6% of the animals (70 individuals) appeared depressed). Measures of unresponsiveness correlated positively with each other across the behavioural tests (Table 3). For example, in all three species, apathy correlated with a lack of response to the observer walking beside the animal, and unresponsiveness to the observer approach correlated with unresponsiveness both to the observer walking beside the animal and to chin-contact. Also, in horses and donkeys, apathy was associated with unresponsiveness to the observer approach. It should be noted that because all these results are correlational, the effect direction can be stated either way around, i.e. alert individuals were more responsive in the human-interaction tests. There were a total of 300 highly unresponsive individuals who
appeared apathetic and responded to none of the human-interaction tests, equating to 2.8% of all the animals (2.5% of donkeys, 3.1% of horses, and 2.9% of mules).

Behaviours that were proposed to test aversion to humans also correlated positively with each other across the tests (Table 3). In particular, avoidance of chin-contact was associated, in all three species, with avoidance of observer approach, and in donkeys and horses, with an aggressive response to observer approach. Tail-tucking in donkeys was similarly associated with avoidance of the observer and avoidance of chin-contact. Avoidance of the observer approach was seen in about 26% of donkeys, 14% of horses, and 23% of mules (Table 2). Across all species, 6.6% of animals either avoided or showed aggression to the observer and avoided chin-contact, and 2.6% of donkeys showed both those responses as well as tail-tucking.

Even the species-specific associations showed similar patterns to the above, indicating either unresponsiveness or aversion to humans (Table 3).

Correlations between behaviours and physical welfare problems

Apathy was associated with a number of indicators of poor health, including – in all three species – a low BCS and abnormal mucous membrane colour (and possibly more numerous and severe skin lesions, but this was only a trend in horses and mules) (Table 4). The odds ratios show that the effect sizes could be large, such as a one-point decrease in BCS approximately doubling the chance that an animal would appear apathetic. In general, apathy and unresponsiveness to the observer were associated with lower BCSs, older age, and other health problems that depended on the species. It is also worth specifically noting that limb and foot problems (swollen tendons and/or joints in donkeys, and abnormal gaits in horses) reduced the chance that animals would show an avoidance of the observer approach. Conversely, proactive behaviours – including alertness, human avoidance behaviours, and
aggressive or friendly responses to the observer – were usually associated with
measures such as higher BCSs and younger ages.

Exceptions to this pattern were that abnormal soles and abnormal hoof shapes
were associated with alertness. There were also non-significant trends indicating that
older horses might be more likely to avoid chin-contact than younger ones were; and
that faecal soiling in donkeys might be associated with a friendly response to the
observer.

We found no significant relationships or trends between responses to humans
and anthropogenic injuries, between avoidance of chin-contact and lesions on the lips/
head, or between tail-tuck behaviour and lesions on the hindquarters/ tail.

Discussion

The results suggest that the behavioural tests incorporated into this welfare
assessment have potential as welfare indicators for identifying individual animals with
negative welfare, in an unresponsive state, or that consistently show behavioural
aversion to unfamiliar humans.

Unresponsiveness as a working equine welfare indicator

It appears that equids with more severe and numerous physical problems enter
a state of behavioural unresponsiveness, consistent across the five measurements
taken here. The association with physical problems makes it highly unlikely that the
behavioural unresponsiveness we have observed in the context of working equids
reflects neutral or positive welfare, such as resting or relaxed states. Instead, it implies
that the animals’ resources are being stretched to their limits and their fitness is
compromised; the animals – of prey species – are conserving ‘energy’, possibly even
at the risk of not responding appropriately to potentially threatening stimuli. In terms
of the sentient experiences of these animals, this behaviour could indicate any of
several different negative welfare states, such as malaise (Kelley et al., 2003; Millman, 2007), exhaustion from overwork (Tadich et al., 1997; Pritchard et al., 2009), chronic pain (Ashley et al., 2005), apathy, or depression (Dunn et al., 2005), which may differ depending on the physical problem in question.

Most of these states can be associated with sickness behaviour, which is underlain by a ubiquitous, non-specific proinflammatory cytokine response to a range of problems (Hart, 1988; Kelley et al., 2003; Dantzer & Kelley, 2007). The generality of the response means that it is useful for identifying vulnerable animals initially, but that further diagnostic tests are required to elucidate the specific problem in each case. Sickness behaviour is adaptive in that it allows the body’s resources to be diverted towards the immune system, but the costs include reduced vigilance and a lack of maintenance behaviours, such as eating and grooming: as Hart (1988) states, “The sick individual is viewed as being at a life or death juncture and its behavior is an all-out effort to overcome the disease”. In farm animals, recommendations suggest that individuals exhibiting sickness behaviour should be rested in a quiet area to aid their recovery (e.g. Millman, 2007), but working equids in developing countries can rarely be rested, because of the extreme dependency of their owners on the daily income and subsistence provided by their animals.

Approximately 2.8% of equids appeared apathetic and failed to respond to any of the human-interaction tests, even when the observer made physical contact with their chins. While a relatively small percentage of animals, this may signify a severe welfare problem because of the association we have found between unresponsiveness and many physical problems, and it suggests that if we scale up from the 10,843 equids here to the 93.6 million equids in developing countries as a whole, approximately 2.6 million working equids may be in this unresponsive state worldwide.
The unresponsive measure that was associated with the most physical problems in the three species was an apathetic general attitude, in which state approximately 13% of the equids were classified. This attained acceptable reliability within observers, but poor reliability between observers (Burn et al., 2009) (remembering that the observers in the current study were only those who attained at least 80% agreement with the trainer). This suggests that some observers used different thresholds or differing cues for ascribing the more ambiguous animals to one category of alertness or another. However, the biologically plausible associations between apathy, unresponsiveness in the other tests, and physical problems, suggest that the alertness/apathy distinction describes an underlying biological construct that was strong enough to be observed here despite this. Alertness/apathy in working equids could therefore constitute a sensitive, if non-specific, marker of underlying problems that would otherwise only be identified on closer inspection; another such indicator in these animals is BCS, which correlates with many other diverse physical problems (Burn et al., in press).

Nevertheless, assessment of alertness/apathy should be refined, particularly for studies where this brief, broad-brush assessment protocol could be replaced with a more focussed and in-depth assessment. The behavioural assessment could be improved by breaking alertness down into its observable components (e.g. ear movement and position, eye closure, head position, and foot and tail movement, etc), or by adding a greater number of subjective ‘whole animal’ descriptors (e.g. rigid posture, restless, relaxed, asleep/resting or eating, etc). A refined system could not only improve inter-observer reliability, but would also allow greater discrimination between different negative, unresponsive welfare states; for example, a rigid stance, inattentive to the external environment, is often associated with chronic pain (Ashley et al., 2005), and thus might be distinguishable from the more ‘slumped’ stance associated with depression/exhaustion. Similarly, the associations observed here between foot abnormalities and alertness in donkeys, might be attributed to foot pain.
causing weight-shifting behaviour (Ashley et al., 2005) (foot movement constitutes part of the ‘alert’ descriptor here), rather than donkeys with abnormal feet being alert per se. Other suggestions of pain in the animals observed here were the associations between reduced observer avoidance and presence of limb swellings/ gait abnormalities in donkeys and horses, respectively.

Human-equine interactions

Aversion to the observer was suggested through the significant associations between avoidance or aggression towards the observer approach, a tail-tuck response in donkeys, and avoidance of chin-contact. The trend associating a friendly response to the observer with acceptance of chin-contact in donkeys lends some weight towards this being more than just an active/ passive distinction between responses to the observer. The acceptable inter-observer reliability of these tests further suggests that individual animals are consistent in how they respond to different unfamiliar strangers (Burn et al., 2009).

These tests did not actually correlate with any likely anthropogenic pathologies, so we have no evidence to suggest that aversion to the observer indicates fear of being physically injured by them. Of course, a lack of significance does not mean that no relationship exists, but with the large total number of animals sampled here, we should have had sufficient power to at least detect strong associations within the current dataset. More sensitive and diverse measurements might reveal more subtle relationships, as the measurements here were not recorded for the purposes of the current study, so they are quite limited. Another limitation was that the response to the (unfamiliar) observer may not reflect the response to the animals’ regular handlers, but the animal attendants would not have been able to carry out the human-interaction tests in a standardised manner; hence trained observers were used as the stimuli instead.
To confirm whether the aversion to the observer assessed here reflects fear or aversion to humans, rather than, say, aversion to any novel stimuli, more focused experimental studies will be required. Well validated indicators of fear should correlate with the proposed fear or aversion behaviours. For example, opportunistic observations of owner/user behaviours that are known to cause poor welfare and/or aversions to humans in farm animals, such as slapping, beating or shouting (Rushen et al., 1999; Hemsworth, 2003), could be informative. Such observations might be expected to show that animals that are regularly slapped, beaten or shouted at by their users would generally respond with more behaviours or physiological responses that indicate fear or aversion to humans (possibly including learned helplessness in some extreme cases of chronic stress: Vollmayr & Henn, 2003).

Nevertheless, the correlations between tests again suggest that the behaviours are rooted in a biological construct that is consistent within individual equids, and which generalises to different unfamiliar humans. If this represents fear of humans or of novel stimuli generally, it is of concern because some of the behaviours were fairly prevalent: for example, approximately a quarter of donkeys and mules attempted to avoid the observer approach. Clearly this is a topic that merits further research, and interventions may be necessary to facilitate an improvement in the relationships between working equids and their human handlers.

Physical problems that were most strongly associated with behavioural effects

A final aspect of welfare significance that these results bring to light, is the relative importance of particular physical problems in terms of the behavioural associations seen here. The physical problems that correlated most strongly with unresponsiveness can be summarised as low BCS, abnormal mucous membrane colour, and to a lesser extent, numerous and severe skin lesions, where the association
with apathy and at least one other measure of unresponsiveness was observed across all three species. As mentioned previously, lower BCS correlates with many other physical problems in working equids, which is of concern since over 29% of working equids were scored as ‘very thin’ (≤1.5 on a scale of 1 – 5: very thin – very fat) (Burn et al., in press). The causes of low BCS are multifactorial, and likely to include malnutrition, overwork, parasitism, and disease, which could simultaneously cause behavioural unresponsiveness. Conversely, behavioural unresponsiveness may include a reduced appetite, as in sickness (Hart, 1988; Dantzer & Kelley, 2007; Weary et al., 2009) and depression (Vollmayr & Henn, 2003), which would further reduce BCS. Skin lesions in these animals are also known to be severe and numerous, with over 25% of equids having at least one moderate or deep lesion, and 62% having 1 – 13 lesions larger than 2x2 cm (Burn et al., in press). The lesions could cause apathy through pain and/or infection, or conversely an apathetic animal may be more prone to lesions if it stumbles or collides with objects. It is well known that thinner equids have more lesions (e.g. Pritchard et al., 2005; Burn et al., in press), but this correlation does not explain the association between apathy and lesion severity, because the association remained significant even when BCS was included in the model.

The relationship between apathy and abnormal mucous membrane colour was more unexpected, because mucous membrane colour is subjective, and it attained poor inter-observer reliability (Burn et al., 2009). Nevertheless, in the current study, the relationship was significant in all three species, and abnormal mucous membrane colour does appear to give a clinically useful indication of anaemia, including illnesses, such as colic (e.g. Thoefner et al., 2001), diarrhoea (Hillyer, 2004), or babesiosis (Hailat et al., 1997). The current study therefore suggests that illnesses like these are associated with an apathetic behavioural state in working equids, consistent with sickness induced lethargy and/or pain (Aubert, 1999; Millman, 2007; Weary et al., 2009). In previous haematological studies, even apparently healthy equids working in Pakistan, had lower concentrations of haemoglobin, erythrocytes and
haematocrit than those seen in horses in developed countries, indicating that sub-
clinical anaemia is prevalent in these working equids (Gul et al., 2007; Pritchard et al.,
2009).

The observer reliability of mucous membrane colour assessment requires
improvement by including more categories than simply ‘normal’ or ‘abnormal’. For
example, it could include standardised colour descriptors as in the study by Thoefner
and colleagues (2001), as well as an ordinal score indicating whether the abnormality
was mild, moderate or pronounced.

Other physical problems that were significantly associated with apathy or
unresponsiveness to the human-interaction tests in more than one species were faecal
soiling (indicative of diarrhoea) and older age (Table 4). Eye abnormalities also more
than doubled the chance of a horse appearing apathetic; eye closure formed part of the
classification of an animal as apathetic, but this result may suggest that many eye
abnormalities could be painful, in horses at least. It should be noted that other
physical problems not reaching significance in the current study might also have
detrimental effects on equine welfare, such as acute, localised pain, or general
anxiety, which we did not attempt to measure here.

The only positive welfare indicator in the current study was a friendly
response to the observer approach. This shows promise, as it was significantly
associated with a younger age and better BCS. More ambiguously, however, there
was a non-significant trend towards a higher likelihood of faecal soiling, indicating
diarrhoea, in friendlier donkeys. This may be a Type I error, but is worth mentioning
speculatively because some owners or tourists may hand-feed the animals certain
inappropriate foods, making the animals more friendly but also inadvertently giving
them diarrhoea. Other positive welfare indicators could help identify additional subtle
effects of the physical conditions on welfare. Few positive welfare indicators have yet
been validated in animal welfare science (Boissy et al., 2007; Yeates & Main, 2008),
but it would be worth incorporating such measures into a field assessment protocol once that becomes practicable in the future.

Summary

In summary, behavioural unresponsiveness correlated across the behavioural measures in the current study, and was associated with more numerous or severe physical conditions. The strongest associations were found between an apathetic general attitude and lower BCS, abnormal mucous membrane colour, older age, and (in horses) eye abnormalities; apathy/alertness may therefore provide a useful – if non-specific – indicator for rapidly identifying animals most in need of welfare interventions. Behaviours that were proposed to indicate aversion to humans correlated across the four human-interaction tests, but showed no significant relationships with physical problems that might suggest injury by humans. Further research will be necessary to investigate fear of humans in these animals, since 21% of equids avoided the observer. Many of the measurements taken here should be refined for future, more in-depth welfare assessments, especially alertness and mucous membrane colour, which showed poor inter-observer agreement. Nevertheless, our results suggest that the behaviours included in this welfare assessment show promise as working equine welfare indicators, and deepen our understanding of the relationships between behaviour and physical health in these animals. The associations found here are correlational, so experimental research will be required to understand their causal relationships, and to develop effective interventions to improve working equine welfare.

Acknowledgements

This study was supported and funded by the Brooke Hospital for Animals. Many thanks to all the owners who kindly permitted their animals to be used in this study, and to the observers who collected the data. We are grateful for Dr Joy C.
Pritchard’s constructive comments on the manuscript. We would also like to thank the
Kenya Network for Dissemination of Agricultural Technologies, Equinos Sano para
El Pueblo (ESAP, Guatemala), Gambia Horse and Donkey Trust, and the Aga Khan
Rural support programme (Chitral, Pakistan) for their collaboration; the Afghanistan
data were collected in association with the Committee for Rehabilitation of Aid to
Afghanistan; also, in 2003 Help in Suffering and The Blue Cross assisted with the
Jaipur and the Hyderabad welfare assessments in India, respectively.

References

pain in horses and donkeys: application to clinical practice and future studies.

Aubert, A., 1999. Sickness and behaviour in animals: a motivational perspective.

Epidemiol. 54, 343-349.

Boissy, A., Manteuffel, G., Jensen, M.B., Moe, R.O., Spruijt, B., Keeling, L.J.,
Winckler, C., Forkman, B., Dimitrov, I., Langbein, J., Bakken, M., Veissier,
I., Aubert, A., 2007. Assessment of positive emotions in animals to improve
their welfare. Physiol. Behav. 92, 375-397.

Broster, C.E., Burn, C.C., Barr, A.R.S., Whay, H.R., 2009. The range and prevalence
of pathological abnormalities associated with lameness in working horses from
developing countries. Equine Vet. J. 41, 474-481.

press. Selected health and management issues facing working donkeys
presented for veterinary treatment in rural Mexico: some possible risk factors

welfare assessment: problems with high prevalences of certain results. Anim.
Welf. 18, 177-187.

Burn, C.C., Dennison, T.L., Whay, H.R., in press. Environmental and demographic
risk factors for poor welfare in working horses, donkeys, and mules in
developing countries. Vet. J.

Dantzer, R., Kelley, K.W., 2007. Twenty years of research on cytokine-induced

more by housing conditions than by stocking density. Nature 427, 342-344.

Sci. 59, 19-29.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Possible categorisations</th>
<th>Brief definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td><5 / 5-15 / >15</td>
<td>(Assessed by observing the teeth)</td>
</tr>
<tr>
<td>Sex</td>
<td>stallion / gelding / mare</td>
<td>N/A</td>
</tr>
<tr>
<td>Work type</td>
<td>Tourism (riding) / Tourism (carriage) / Human transport (carriage) / Human transport (riding) / Goods transport (cart) / Goods transport (pack) / Agriculture / Brick kiln (cart) / Brick kiln (pack) / Ceremonial / Foal of working mother / or Other</td>
<td>N/A</td>
</tr>
<tr>
<td>Behaviour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General alertness</td>
<td>alert / apathetic / depressed (apathetic and depressed were combined in the current study)</td>
<td>Responding to surroundings e.g. ears moving and often forward, eyes open, feet may be moving, tail swishing, head up unless sniffing or eating/ passive response to surroundings e.g. small ear movements, some tail swishing, feet may be moving, eyes may be half-closed, head may be lowered/ Unresponsive to surroundings, e.g. ears still and lowered, eyes closed or half-closed, no tail-swishing or foot movement, head lowered.</td>
</tr>
<tr>
<td>Observer approach</td>
<td>moves away / turns head away / no response / friendly/ aggressive (moves away and turns away were combined in the current study)</td>
<td>Moves or attempts to move away/ turns head away/ no obvious response/ Turns head towards, ears forward / Attempts to bite, rear, kick or strike with foreleg; ears held back or flattened</td>
</tr>
<tr>
<td>Walk-beside</td>
<td>no response / signs of attention</td>
<td>No obvious response/ signs of attention e.g. ears turn towards, head turns towards, moves towards or away, attempts to kick</td>
</tr>
<tr>
<td>Tail-tuck</td>
<td>no response/ tail-tuck</td>
<td>Tail remains relaxed/ clamps down tail or tucks in hindquarters</td>
</tr>
<tr>
<td>Chin-contact</td>
<td>accepts / avoids</td>
<td>Shows no response chin-contact/ Moves its head to avoid or reject contact</td>
</tr>
<tr>
<td>General health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body condition</td>
<td>1 – 5 (including half-scores)</td>
<td>Ribs, spine and hips prominent, neck topline concave, hollow pelvis/ Ribs, spine and hips visible, flat pelvis/ Spine just visible, neck topline straight, slightly rounded pelvis/ Spine not visible, neck topline slightly convex, rounded pelvis/ neck topline distinctly convex, rounded pelvis with ‘gutter’ along spine</td>
</tr>
<tr>
<td>Faecal soiling</td>
<td>faecal soiling present / absent</td>
<td>Spattered faecal matter, dried or fresh, on inner thighs or back of hocks/ absent e.g. no staining or staining from mud, grass or other materials</td>
</tr>
<tr>
<td>Ectoparasites</td>
<td>present / absent</td>
<td>Ticks, mites, bot eggs, lice, or lice eggs anywhere on</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Eyes</td>
<td>no abnormalities / abnormal Healthy eyes/ At least one eye with wet eyelashes, discharge, redness, swelling, opacity or injury</td>
<td></td>
</tr>
<tr>
<td>Mucous membranes</td>
<td>normal colour / abnormal Pink/ Abnormal e.g. yellowish, pale, reddish, greyish or purpleish</td>
<td></td>
</tr>
<tr>
<td>Teeth missing</td>
<td>yes / no (only assessed during 2003-2004) At least one tooth missing/ All teeth present</td>
<td></td>
</tr>
<tr>
<td>Skin lesions</td>
<td>Severity score (0, 1, 2, 3) x number of affected locations on body Severity scores: <2x2 cm / superficial / broken skin / deep Locations of lesions: breast, and shoulders, ears, forelegs, girth and belly, head, hindlegs, hindquarters, knees, lips, neck, point-of-hock, ribs, flank, tail and tailbase, withers and spine</td>
<td></td>
</tr>
<tr>
<td>Firing lesions</td>
<td>Severity score (0, 1, 2, 3) Severity scores: 0 - 2x2 cm / superficial / broken skin / deep</td>
<td></td>
</tr>
<tr>
<td>Limb and foot pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swollen tendons and joints</td>
<td>yes / no Cannon bone, suspensory ligament, flexor tendons and fetlock joint are clearly visible and distinct from each other in all four legs/ In one or more legs, the distinction between the suspensory ligament, tendons and joint become unclear; the lower part of the tendon and the back of the fetlock joint may look bulgy, lumpy or square in shape</td>
<td></td>
</tr>
<tr>
<td>Hoof horn quality</td>
<td>normal / abnormal Healthy / abnormalities e.g. broken hoof wall, cracks, ridges, wavy or non-parallel rings</td>
<td></td>
</tr>
<tr>
<td>Hoof shape</td>
<td>normal / abnormal Medio-laterally symmetrical, coronary band horizontal, and toe and heel wall slopes parallel / Medio-laterally asymmetrical, coronary band slanted, and toe and heel not parallel (e.g. toe overgrown or excessively short)</td>
<td></td>
</tr>
<tr>
<td>Sole shape and structure</td>
<td>normal / abnormal Round in horses; keyhole-shaped in donkeys; symmetrical, with intact frog, distinct bars and slightly cupped sole / asymmetrical, cracked, oval or pear-shaped; frog narrow, hard, atrophied or missing; bars missing; sole flat; or sheared heels</td>
<td></td>
</tr>
<tr>
<td>Gait</td>
<td>normal / abnormal Normal and even / any reluctance to put weight on a limb, asymmetrical dropping or raising of hip, uneven nodding of head, short or uneven stride length</td>
<td></td>
</tr>
</tbody>
</table>

Brief descriptions of the behavioural and physical measures taken as part of a working equine welfare assessment. More detailed descriptions can be found in a 102-page, illustrated guidance booklet (Pritchard & Whay, 2003 (unpublished); 2004 (unpublished), available upon request from the authors). The protocol and sequence in which these measurements were taken are described in the text.
Table 2

<table>
<thead>
<tr>
<th>Behavioural response</th>
<th>Donkeys (%)</th>
<th>Horses (%)</th>
<th>Mules (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General alertness - Apathetic/ depressed</td>
<td>13.1</td>
<td>13.7</td>
<td>13.4</td>
</tr>
<tr>
<td>Observer approach - No response</td>
<td>64.6</td>
<td>68.7</td>
<td>61.5</td>
</tr>
<tr>
<td>Observer approach - Avoidance</td>
<td>25.9</td>
<td>14.2</td>
<td>23.0</td>
</tr>
<tr>
<td>Observer approach - Aggression</td>
<td>0.3</td>
<td>1.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Observer approach - Friendly</td>
<td>11.3</td>
<td>15.5</td>
<td>14.8</td>
</tr>
<tr>
<td>Walk-beside - Signs of attention</td>
<td>91.2</td>
<td>86.6</td>
<td>90.0</td>
</tr>
<tr>
<td>Tail-tuck</td>
<td>21.2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Chin-contact - Avoidance</td>
<td>16.4</td>
<td>20.6</td>
<td>15.4</td>
</tr>
</tbody>
</table>

The percentages of each working equine species displaying the behaviours recorded here. The percentages are compiled from 5481 donkeys, 4504 horses, and 858 mules across nine developing countries. In the general alertness measurement, apathy and depression were combined, and in the observer approach test, moving and turning away were summed as ‘avoidance’.
<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Predictor</th>
<th>Species</th>
<th>Odds ratio ± SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General alertness - Apathetic/ depressed</td>
<td>Observer approach - No response</td>
<td>Donkey</td>
<td>1.361 ± 1.110</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.401 ± 1.124</td>
<td>0.0042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>3.177 ± 1.124</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Walk-beside - No response</td>
<td>Horse</td>
<td>2.307 ± 1.126</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>3.815 ± 1.298</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Observer approach - Avoidance</td>
<td>Chin-contact - Avoidance</td>
<td>Horse</td>
<td>2.214 ± 1.104</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Mule</td>
<td>3.022 ± 1.234</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>1.931 ± 1.140</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Walk-beside - Signs of attention</td>
<td>Mule</td>
<td>3.130 ± 1.527</td>
<td>0.0071</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>2.361 ± 1.129</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Observer approach - No response</td>
<td>Walk-beside - No response</td>
<td>Horse</td>
<td>2.344 ± 1.125</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Mule</td>
<td>4.183 ± 1.411</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>1.982 ± 1.088</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.859 ± 1.089</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mule</td>
<td>2.012 ± 1.240</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>Observer approach - Aggression</td>
<td>Chin-contact - Avoidance</td>
<td>Donkey</td>
<td>3.158 ± 1.428</td>
<td>0.0012</td>
</tr>
<tr>
<td>Observer approach - Friendly</td>
<td>Walk-beside - Signs of attention</td>
<td>Horse</td>
<td>5.104 ± 1.244</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>2.377 ± 1.251</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Walk-beside - No response</td>
<td>Chin-contact - Accepts</td>
<td>Horse</td>
<td>2.678 ± 1.182</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Mule</td>
<td>3.180 ± 1.692</td>
<td>0.0281†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>1.377 ± 1.156</td>
<td>0.0268†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.445 ± 1.138</td>
<td>0.0043</td>
<td></td>
</tr>
<tr>
<td>Tail-tuck</td>
<td>Observer approach - Avoidance</td>
<td>Donkey</td>
<td>2.257 ± 1.087</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Walk-beside - Signs of attention</td>
<td>Donkey</td>
<td>2.416 ± 1.181</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Chin-contact - Avoidance</td>
<td>Donkey</td>
<td>1.623 ± 1.096</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Statistically significant associations between behaviours recorded as part of a working equine welfare assessment, split by equine species. Five behavioural measurements were made: general alertness, observer approach, walk-beside, tail-tuck (in donkeys only), and chin-contact. Because the study was correlational, the associations between the behaviours in the first and second columns could be stated either way around, but the way they are reported in the table reflects the statistical models. The effect sizes are presented as odds ratios (± SE), and the alpha level was set at a \(P \)-value of 0.016 to adjust for the false discovery rate; † indicates trends for which \(P < 0.05 \), but which failed to meet the adjusted significance level.
Table 4

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Predictor</th>
<th>Species</th>
<th>Odds ratio ± SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General alertness - Apathetic/ depressed</td>
<td>Lower body condition score</td>
<td>Donkey</td>
<td>2.570 ± 1.093</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>1.859 ± 1.094</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mule</td>
<td>2.654 ± 1.271</td>
<td>0.0001</td>
</tr>
<tr>
<td>More severe lesions</td>
<td>Donkey</td>
<td>1.166 ± 1.046</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.133 ± 1.058</td>
<td>0.0258<1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mule</td>
<td>1.350 ± 1.146</td>
<td>0.0275<1</td>
<td></td>
</tr>
<tr>
<td>Abnormal mucous membranes</td>
<td>Donkey</td>
<td>1.279 ± 1.097</td>
<td>0.0085</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.379 ± 1.115</td>
<td>0.0031</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mule</td>
<td>1.786 ± 1.259</td>
<td>0.0120</td>
<td></td>
</tr>
<tr>
<td>Faecal soiling</td>
<td>Donkey</td>
<td>1.224 ± 1.103</td>
<td>0.0403†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.283 ± 1.108</td>
<td>0.0156</td>
<td></td>
</tr>
<tr>
<td>Older age</td>
<td>Donkey</td>
<td>2.052 ± 1.071</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.310 ± 1.080</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Ectoparasites</td>
<td>Donkey</td>
<td>1.300 ± 1.130</td>
<td>0.0320<1</td>
<td></td>
</tr>
<tr>
<td>Abnormal gait</td>
<td>Horse</td>
<td>2.034 ± 1.433</td>
<td>0.0485<1</td>
<td></td>
</tr>
<tr>
<td>Eye abnormalities</td>
<td>Horse</td>
<td>2.356 ± 1.256</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Teeth missing</td>
<td>Horse</td>
<td>2.492 ± 1.586</td>
<td>0.0479<1</td>
<td></td>
</tr>
<tr>
<td>General alertness - Alert</td>
<td>Abnormal hoof shape</td>
<td>Donkey</td>
<td>1.527 ± 1.163</td>
<td>0.0051</td>
</tr>
<tr>
<td></td>
<td>Sole abnormalities</td>
<td>Donkey</td>
<td>1.944 ± 1.307</td>
<td>0.0131</td>
</tr>
<tr>
<td>Observer approach - No response</td>
<td>Lower body condition score</td>
<td>Donkey</td>
<td>1.504 ± 1.067</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>1.156 ± 1.064</td>
<td>0.0194<1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mule</td>
<td>1.571 ± 1.192</td>
<td>0.0103</td>
</tr>
<tr>
<td>Older age</td>
<td>Donkey</td>
<td>1.225 ± 1.054</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.339 ± 1.064</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Abnormal mucous membranes</td>
<td>Mule</td>
<td>1.636 ± 1.213</td>
<td>0.0112</td>
<td></td>
</tr>
<tr>
<td>Higher body condition score</td>
<td>Donkey</td>
<td>1.328 ± 1.070</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Observer approach - Avoidance</td>
<td>Fewer tendon/joint swellings</td>
<td>Donkey</td>
<td>1.310 ± 1.117</td>
<td>0.0144</td>
</tr>
<tr>
<td></td>
<td>Normal gait</td>
<td>Horse</td>
<td>2.004 ± 1.208</td>
<td>0.0002</td>
</tr>
<tr>
<td>Observer approach - Aggression</td>
<td>Higher body condition score</td>
<td>Donkey</td>
<td>2.509 ± 1.297</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>3.963 ± 1.586</td>
<td>0.0029</td>
</tr>
<tr>
<td>Observer approach - Friendly</td>
<td>Mule</td>
<td>3.963 ± 1.586</td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donkey</td>
<td>1.324 ± 1.083</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.537 ± 1.077</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Walk-beside - No response</td>
<td>Lower body condition score</td>
<td>Donkey</td>
<td>1.358 ± 1.097</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>1.632 ± 1.221</td>
<td>0.0148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mule</td>
<td>1.357 ± 1.140</td>
<td>0.0204<1</td>
</tr>
<tr>
<td></td>
<td>Older age</td>
<td>Donkey</td>
<td>1.212 ± 1.082</td>
<td>0.0147</td>
</tr>
<tr>
<td></td>
<td>Horse</td>
<td>1.252 ± 1.078</td>
<td>0.0027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower body condition score</td>
<td>Donkey</td>
<td>1.347 ± 1.103</td>
<td>0.0023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>1.933 ± 1.278</td>
<td>0.0073</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mule</td>
<td>1.537 ± 1.077</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tail-tuck</td>
<td>Younger age</td>
<td>Donkey</td>
<td>1.150 ± 1.061</td>
<td>0.0186<1</td>
</tr>
<tr>
<td>Chin-contact - Accepts</td>
<td>Faecal soiling</td>
<td>Mule</td>
<td>1.974 ± 1.269</td>
<td>0.0043</td>
</tr>
<tr>
<td></td>
<td>More severe lesions</td>
<td>Horse</td>
<td>1.099 ± 1.046</td>
<td>0.0383<1</td>
</tr>
<tr>
<td></td>
<td>Younger age</td>
<td>Horse</td>
<td>1.363 ± 1.102</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Statistically significant associations between behaviours and physical problems recorded as part of a working equine welfare assessment, split by equine species. Five behavioural measurements were made: general alertness, observer approach, walk-beside, tail-tuck (in donkeys only), and chin-contact. Because the study was
correlational, the associations between the variables in the first and second columns
could be stated either way around, but the way they are reported in the table reflects
the way they were tested in the statistical models. The effect sizes are presented as
odds ratios (± SE), and the alpha level was set at a P-value of ≤0.016 to adjust for the
false discovery rate; † indicates trends for which $P < 0.05$, but which failed to meet the
adjusted significance level.